Monatshefte für Chemie 119, 65-70 (1988)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1988

Siliciumverbindungen mit starken intramolekularen sterischen Wechselwirkungen, XXIX [1] Octacyclohexylcyclotetrasilan

Manfred Weidenbruch, Karl-Ludwig Thom, Siegfried Pohl und Wolfgang Saak

Fachbereich Chemie der Universität, D-2900 Oldenburg, Bundesrepublik Deutschland

(Eingegangen 20. Februar 1987. Angenommen 2. März 1987)

Silicon Compounds with Strong Intramolecular Steric Interactions, XXIX [1]. Octacyclohexylcyclotetrasilane

Reductive halogen elimination from 1,4-dichlorooctacyclohexyltetrasilane gives octacyclohexylcyclotetrasilane (4) in high yield. The X-ray structure analysis of 4 reveals a folded Si₄-framework with an angle of 27.6° between the two halves of the puckered ring corresponding to a Si—Si bond lengthening to d = 239.1 pm. All cyclohexyl rings assume a chair conformation.

(Keywords: Oligosilanes, Cyclotetrasilane, Molecular structure)

Die Ringgröße *n* von Cyclooligosilanen $(R^1 R^2 Si)_n$ [2—4] wird im thermischen Gleichgewicht vornehmlich durch die Raumerfüllung der Organylgruppen R^1 und R^2 bestimmt. Zur Vermeidung zu enger van-der-Waals-Kontakte zwischen den H-Atomen benachbarter Liganden sinkt mit deren steigendem sterischen Anspruch der Wert von *n*. Eine Korrelation von Ringgröße und Substitutionsmuster des Silicium [1, 5] ermöglichen die sterischen Substituentenparameter $E_S(Si)$ [6], wobei allerdings durch die Wahl gezielter Darstellungsmethoden auch andere, thermodynamisch weniger begünstigte Cyclooligosilane zugänglich sind.

So resultiert bei der reduktiven Halogeneliminierung aus *tert*-Butylcyclohexyldiiodsilan ausschließlich das entsprechende Cyclotrisilan, während ausgehend von den 1,2-Di-*tert*-butyl-1,2-dihalogen-1,2-dicyclohexyldisilanen je nach den Reaktionsbedingungen ein Gemisch von Drei- und Vierring oder ausschließlich das Cyclotetrasilan isolierbar ist [1]. Bei $R^1 = R^2 = tert$ -Butyl ist aufgrund der großen Sperrigkeit der Substituenten nur noch der Dreiring existent, unabhängig davon, ob bei der Synthese von einem Mono-, Di- oder Trisilan ausgegangen wird [7,8].

Versuche, auf analogem Wege ein Percyclohexylcyclooligosilan zu isolieren, blieben zunächst ergebnislos, da sowohl die Enthalogenierung von Dihalogendicyclohexylsilanen als auch von 1,2-Dichlortetracyclohexyldisilan (1) [9] nicht auftrennbare Gemische aus acyclischen Oligosilanen neben wenig Octacyclohexylcyclotetrasilan (4) lieferte. Eines der Hauptprodukte ist dabei das Tetrasilan 2, das mit Chlor problemlos in 1,4-Dichloroctacyclohexyltetrasilan (3) übergeführt werden kann. Einfacher ist 3 durch Umsetzung von 1 mit der äquimolaren Menge an Naphthalin/Lithium zugänglich. Einwirkung von Kalium auf 3 ergibt 4 in ausgezeichneter Ausbeute (Schema 1).

Die Verbindung 4 kristallisiert tetragonal in der Raumgruppe I4. Das Si₄-Gerüst bildet einen gefalteten Vierring (Abb. 1), dessen Faltungswinkel mit 27.6° zwischen den beiden Molekülhälften um ca. 6° gegenüber dem in 1,2,3,4-Tetra-*tert*-butyl-1,2,3,4-tetracyclohexylcyclotetrasilan (5) [1] verringert ist. Dieses Ergebnis ist nicht unerwartet, da in 4 die sperrigen *tert*-Butylgruppen durch die sterisch weniger anspruchsvollen und zudem konformativ beweglichen Cyclohexylgruppen ersetzt sind.

Alle Cyclohexylgruppen nehmen die Sesselkonformation ein. Die Faltung des Si₄-Ringes gestattet eine Unterscheidung zwischen quasi-

Abb. 1. Molekül von 4 im Kristall (ohne H-Atome; fehlgeordnete Atome — C(7) bis C(12) bzw. C(7*)—C(12*) — isotrop; Schwingungsellipsoide mit 50% Wahrscheinlichkeit; zur Fehlordnung s. Text). Ausgewählte Bindungsabstände (pm) und Bindungswinkel (°) (Standardabweichungen): S-—Si 239.1 (2); Si—C(1) 192.2 (2); Si—C(7) 193.8 (13); Si—C(7*) 190.4 (12); Si—Si = Si 88.4 (2); C(1)— Si—C(7) 117.2 (4); C(1)—Si—C(7*) 106.0 (5)

äquatorialen und quasi-axialen Cyclohexylgruppen (Abb. 2). Während die äquatorialen Gruppen [C(1)—C(6)] exakt die Punktlage $\overline{4}$ erfüllen, sind die axial angeordneten Ringe [C(7)—C(12)] und [C(7*)—C(12*)] fehlgeordnet. Diese Fehlordnung tritt auch bei der Verfeinerung in einer Raumgruppe auf, welche die vierzählige Inversionsachse nicht berücksichtigt.

In Abb. 1 und 2 sind die mit der Fehlordnung verbundenen beiden möglichen Konformationen der C-Atome 7—12 so dargestellt, daß C(7)—C(12) eine Anordnung und $C(7^*)$ — $C(12^*)$ die andere Anordnung des Cyclohexylringes zeigen. Das einzelne Molekül in Abb. 1 besitzt also keine $\overline{4}$ -Symmetrie.

Die beiden unterschiedlichen Stellungen der axialen Cyclohexylgruppen sind wahrscheinlich aus sterischen oder aus Packungsgründen innerhalb eines Moleküls alternativ besetzt. Die so resultierenden verschiedenen Isomeren besetzen die Punktelage $\overline{4}$ dann statistisch. Es sind

Abb. 2. Stereopaar von 4 (ohne H-Atome)

keinerlei Anzeichen einer Überstruktur vorhanden, die auf eine systematische Besetzung hinweisen.

Die Si—Si-Bindungsabstände sind mit 239.1 pm zwar länger als im alltrans-Isomeren von 1,2,3,4-Tetra-tert-butyl-1,2,3,4-tetramethylcyclotetrasilan (d = 237.7 pm) [10], jedoch deutlich kürzer als in 5, das mit $\overline{d} = 244.5$ pm die längsten in einem Cyclotetrasilan bisher beobachteten Bindungsabstände aufweist [1]. Auch die Si—C-Abstände sind mit $\overline{d} = 192.1$ pm gegenüber den Si—C(Cyclohexyl)-Abständen in 5 um 2.4 pm verkürzt, allerdings sind sie länger als die entsprechenden Abstände in 1,2,3-Tri-tert-butyl-1,2,3-tricyclohexylcyclotrisilan [1] oder im hochgespannten Tetracyclohexylsilan [11].

Experimenteller Teil

Zur Aufnahme der Spektren dienten folgende Geräte. NMR (in C_6D_6): Bruker WP80; Massenspektren (El bzw. CI): Varian MAT212; IR-Spektren: Beckman 4220; UV/VIS-Spektren: Shimadzu UV260. Die Elementaranalysen führten die Analytischen Laboratorien, D-5250 Engelskirchen, durch.

4-Chlor-1,1,2,2,3,3,4,4-octacyclohexyltetrasilan (2)

Zu einer aus 5.6 g (43.8 mmol) Naphthalin und 0.307 g (43.8 mmol) Lithium in 100 ml Tetrahydrofuran (*THF*) gebildeten Naphthalin/Lithium-Suspension wurden bei -78 °C 10.0 g (21.8 mmol) 1 [9] in 50 ml *THF* getropft, das Gemisch langsam auf Raumtemperatur gebracht, *THF* gegen Petrolether 40—60 °C ausgetauscht und Lithiumchlorid abfiltriert. Nach dem Abtrennen des Lösungsmittels und Naphthalins ergab die chromatographische Trennung des Rückstandes an einer Kieselgelsäule 60 mit Petrolether 40—60 °C als Laufmittel zunächst ein Gemisch aus 1,1,2,2-Tetracyclohexyldisilan, 1,1,2,2,3,3,4,4-Octacyclohexyltetrasilan und 4 (GC/MS-Analyse). Als zweite Fraktion resultierten 2.8 g (32% Ausbeute) farblose Kristalle von 2, Fp. = 158—160 °C. ¹H-NMR: $\delta = 1.0$ —2.5 (m, 88 H); 4.0 (s, 1 H) ppm. IR: ν (SiH) = 2070 (m) cm⁻¹. MS (CI, Isobutan): m/z = 811 (M^+ -H, 40% rel. Int.); 777 (M^+ -Cl, 100). C₄₈H₈₉ClSi₄ (814.00). Ber.: C 70.82 H 11.02 Cl 4.36. Gef.: C 71.39 H 10.99 Cl 4.15.

1,4-Dichloroctacyclohexyltetrasilan (3)

Durch eine Lösung von 2.5 g (3.1 mmol) **2** in 100 ml Petrolether 40—60 °C wurde bei -78 °C ein trockener Chlorgasstrom bis zum Auftreten einer anhaltenden Grünfärbung geleitet. Lösungsmittel und überschüssiges Chlor wurden im Vakuum abdestilliert. Umkristallisation des Rückstandes aus Toluol lieferte 2.45 g (94%) farblose Kristalle von **3**; Fp. = 217—221 °C.

¹H-NMR: $\delta = 1.1-2.6$ ppm.

MS (CI, Isobutan): $m/z = 845 (M^+-H; 3); 811 (M^+-Cl, 100).$ $C_{48}H_{88}Cl_2Si (848.44).$ Ber.: C 67.95 H 10.45 Cl 8.36.

Gef.: C 67.84 H 10.26 Cl 8.27.

Umsetzung äquimolarer Mengen an 1 und Naphthalin/Lithium ergibt unmittelbar 3 in einer Ausbeute von ca. 60%.

Octacyclohexylcyclotetrasilan (4)

 $2.0 \text{ g} (2.4 \text{ mmol}) 3 \text{ und } 0.188 \text{ g} (4.8 \text{ mmol}) \text{ Kalium wurden in 70 ml Toluol 18 h unter Rückfluß erhitzt und ausgefallenes Kaliumchlorid in der Wärme abfiltriert. Nach Einengen der Lösung resultierten 1.67 g (89%) farblose Kristalle von 4, Fp. = <math>360-380$ °C (Zers.).

¹H-NMR: $\delta = 0.8$ —2.2 ppm.

UV: $\lambda_{\text{max}}(\varepsilon) = 277 \text{ sh } (400); 235 (2000) \text{ nm}.$

MS (EI, 70 eV): $m/z = 776 (M^+, 93); 693 (M^+-C_6H_{11}, 5); 611 (Cy_6HSi_4^+, 24);$ 529 ($Cy_5H_2Si_4^+, 81$); 447 ($Cy_4H_3Si_4^+, 100$); 365 ($Cy_3H_4Si_4^+, 78$); 283 ($Cy_2H_5Si_4^+, 73$); 201 ($CyH_6Si_4^+, 85$).

$$\begin{array}{c} C_{48}H_{88}Si_4 \ (777.54). & \text{Ber.: } C\,74.14 \ H\,11.41. \\ & \text{Gef.: } C\,73.93 \ H\,11.40. \end{array}$$

Experimentelles zur Röntgenstrukturanalyse von 4

Bei 297 ± 2 K wurde ein farbloser Kristall mit den Abmessungen $0.4 \times 0.3 \times 0.2$ mm untersucht. Die Zellparameter wurden auf der Basis von 48 Reflexen auf einem Siemens-AED-2-Diffraktometer bestimmt. Raumgruppe I $\overline{4}$ (Nr. 82). a = b = 1079.8 (1), c = 2110.1 (1) pm. $V = 2460 \cdot 10^6$ pm³. Mo-K_a, $\lambda = 71.069$ pm. $2\Theta_{max} = 48^{\circ}$. Gesamtzahl der Reflexe 1 083, davon beobachtet 969 (I $\ge 2\sigma$ (I)). Verfeinerte Parameter 108. R = 5.58; $R_w = 5.83\%$. Lösung mit Direkten Methoden, SHELX-Programmsystem [12]. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 52 391, der Autoren und des Zeitschriftenzitats angefordert werden.

Dank

Die vorliegende Arbeit wurde von der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und durch eine großzügige Sachspende der Firma Bayer AG, Leverkusen, unterstützt.

Literatur

- [1] Mitt XXVIII: Weidenbruch M, Thom KL, Pohl S, Saak W (1987) J Organomet Chem 329: 151
- [2] Hengge E (1979) J Organomet Chem Library 9:261
- [3] West R (1981) Pure Appl Chem 54:1081
- [4] West R (1982) In: Wilkinson G, Stone FGA, Abel EW (eds) Comprehensive organometallic chemistry, vol 2. Pergamon, Oxford, p 365
- [5] Watanabe H, Nagai Y (1985) In: Sakurai H (ed) Organosilicon and bioorganosilicon chemistry. Ellis Horwood, Chicester, p 107
- [6] Cartledge FK (1983) Organometallics 2:425
- [7] Schäfer A, Weidenbruch M, Peters K, von Schnerling HG (1984) Angew Chem 96:311; Angew Chem Int Ed Engl 23:302
- [8] Weidenbruch M, Flintjer B, Schäfer A (1986) Silicon Germanium Tin Lead Comp 9:19
- [9] Weidenbruch M, Thom KL (1986) J Organomet Chem 308:177
- [10] Hurt CJ, Calabrese JC, West R (1975) J Organomet Chem 91:273
- [11] Karipides A (1978) Inorg Chem 17:2604
- [12] Sheldrick GM (1976) SHELX 76, program for crystal structure determination. University of Cambridge, Cambridge, England